Collapse of a molecular cloud core to stellar densities: stellar core and outflow formation in radiation magnetohydrodynamics simulations
نویسندگان
چکیده
We have performed smoothed particle radiation magnetohydrodynamics (SPRMHD) simulations of the collapse of rotating, magnetised molecular cloud cores to form protostars. The calculations follow the formation and evolution of the first hydrostatic core, the collapse to form a stellar core, the launching of outflows from both the first hydrostatic core and stellar cores, and the breakout of the stellar outflow from the remnant of the first core. We investigate the roles of magnetic fields and thermal feedback on the outflow launching process, finding that both magnetic and thermal forces contribute to the launching of the stellar outflow. We also follow the stellar cores until they grow to masses of up to 20 Jupiter-masses, and determine their properties. We find that at this early stage, before fusion begins, the stellar cores have radii of ≈ 3 R with radial entropy profiles that increase outward (i.e. are convectively stable) and minimum entropies per baryon of s/kB ≈ 14 in their interiors. The structure of the stellar cores is found to be insensitive to variations in the initial magnetic field strength. With reasonably strong initial magnetic fields, accretion on to the stellar cores occurs through inspiralling magnetised pseudo-discs with negligible radiative losses, as opposed to first cores which effectively radiate away the energy liberated in the accretion shocks at their surfaces. We find that magnetic field strengths of > 10 kG can be implanted in stellar cores at birth.
منابع مشابه
Collapse of a Molecular Cloud Core to Stellar Densities: The First Three-Dimensional Calculations
We present results from the first three-dimensional calculations ever to follow the collapse of a molecular cloud core (∼ 10 g cm) to stellar densities (> 0.01 g cm). The calculations resolve structures over 7 orders of magnitude in spatial extent (∼ 5000 AU − 0.1 R⊙), and over 17 orders of magnitude in density contrast. With these calculations, we consider whether fragmentation to form a close...
متن کاملStellar Populations in the Central Galaxies of Fossil Groups
It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...
متن کاملTHE EFFECT OF COSMIONS ON THE STABILITY OF MAIN SEQUENCE STELLAR CORES
We have studied the effect of hypothetical Cosmions on the core stability of main sequence stars (of populations I and II). Cosmions, with a mass of 4-10 Gev/c2 and a scattering cross section with nucleons of approximately 10-36 cm2 could prevail in transporting heat in the stellar cores. Raby [17] showed the existence of a local thermal instability caused by the presence of Cosmions in the sol...
متن کاملQuiescent Cores and the Efficiency of Turbulence-accelerated, Magnetically Regulated Star Formation
The efficiency of star formation, defined as the ratio of the stellar to total (gas and stellar) mass, is observed to vary from a few percent in regions of dispersed star formation to about a third in clusterforming cores. This difference may reflect the relative importance of magnetic fields and turbulence in controlling star formation. We investigate the interplay between supersonic turbulenc...
متن کاملFormation of Primordial Protostars
The evolution of collapsing metal free protostellar clouds is investigated for various masses and initial conditions. We perform hydrodynamical calculations for spherically symmetric clouds taking account of radiative transfer of the molecular hydrogen lines and the continuum, as well as of chemistry of the molecular hydrogen. The collapse is found to proceed almost self-similarly like Larson-P...
متن کامل